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Abstract 

 
In present investigation, propagation of wave in micropolar elastic 

medium at non-free surface is discussed. The amplitude ratio’s of 
longitudinal displacement wave (LD wave), coupled transverse displacement 

(CD-I) and transverse rotational wave (CD-II) are obtained for incident 
waves.  
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1 Introduction 
 

Classical theories of elasticity are not able to examine the behaviour of 

materials having brous or course grain structure etc. When the 

microstructure of the material was considered to be rigid, it leads to the 

micropolar theory. This theory is more dependable for geological materials 

like solis and rocks as it accounts the intrinsic rotation and estimates the 

inner structure of the material. Eringen [1] introduced a new formulation of 

equations in thermoelasticity which was known as the equations for the 

micropolar elastic theory. Sharma [2] investigated impact of relaxation times 

and two temperatureson coe cients of re ection in a half-space of micropolar 

thermoelastic solid.  
Fu and Wei [3] investigated the transmission and re ection problem at the im-

perfect interface of the coupled transverse displacement and transverse 

rotational waves between two dissimilar micropolar solids. They discussed the 

impact of imperfect degree of interface on the transmission and the re ection coe 

cients. Khurana and Tomar [4] observed propagation of plane waves (two 

longitudinal waves and two sets of coupled transverse waves) for an nonlocal 

isotropic microp-olar solid and derived re ection coe cients and energy ratios 

when these waves incidents at stress-free boundary. Singh et.al [5] considered 

problem on Rayleigh wave for an rotating half-space in an orthotropic micropolar 

material and solved equations for the surface wave in the half space. They 

obtained the results to show the in uence of orthotropy, rotation and 

nondimensional frequency of the Rayleigh wave. 
 

Zhang et.al [6] calculated the amplitude ratios of re ected waves for di erent 

incident waves and also, re ection coe cients in terms of energy ux ratios at non-

free surface of a micropolar elastic half-space. Hassanpour and Heppler [7] 

reviewed the linear isotropic theory of micropolar elasticity with special attention 

on the notation, which are used for the representation in the micropolar elastic 

moduli and the experimental actions are taken to measure them. Videla and 

Atroshchenko [8] derived the analytical solution subjected to a remote uni-axial 

tension for the problem of a circular micropolar inhomogeneity in an in nite 

micropolar plate in homogeneous imperfect interface. They showed dependence 

of stress concentration factors on the micropolar material constants . 
 

Gade and Ragunath [9] explored reduced micropolar theory to replicate 

ground motion during an earthquake. They calculated the expressions of 

ground displace-ment and rotational motions analytically for the case of 

buried seismic source. Singh [10] investigated a problem on Rayleigh surface 
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wave in an isotropic mi-cropolar elastic solid half-space with impedance 

boundary conditions and derived a secular equation for non dimensional 

speed of the Rayleigh wave, which depends upon various parameters of 

material, frequency, micro-rotation and impedance parameters. Fan and 

Cheng [11] presented a elastic model set based on microme-chanics in the 

framework of micropolar theory having two-phase FGMs to study the impact 

of size on the e ective properties of the FGM and compared those results 

with experimental data. 
 
 

2 Field Equations 
 

Following Eringen [1], the basic equations and constitutive relations in 
micropolar elastic medium are: 
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, - Lame’s constants, t-time, = (2 +k+3 ) t, t- coe cient of linear thermal expansion, C , - 

speci c heat and density, tij -components of stress tensor, ij- 
! 

Kronecker delta, u - displacement vector, ,k, and are micropolar constants, 
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mij - couple stress tensor components, ijm is alternating tensor, k is microrotation 
vectors,. 
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3 Formulation and the solution 
 

We have taken a homogeneous, isotropic with micropolar in elastic half space on 

non free surface. The rectangular cartestian co-ordinate system (x1, x2, x3) having 

origin at interface x3 = 0 is considered along with x3-axis pointing normally into 

medium. Plane waves in x1,x3-plane are considered in which wave front is parallel 

to x2-axis, therfore all variables will depend on x3,x1 and t. Thus problem 
considered in two dimensional, so we take 
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The expression related to components of displacement are expressed by using 

Helmholtz decomposition, therefore u3 and u1 are related to the and (scalar 
potential functions) having no dimensions are given by 
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using equations (5)-(6) in (1)-(4) and assuming the motion to be harmonic and 

for solving the equations we assume solutions in the form 
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where denoted as wave number, is known as iota, is angle of inclination and 

quanties such as 
0
; 

0
; 

0
2 are arbitrary constants. Using the values of ; ; 2 we 

obtained following equations 
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where (= ! ) represents the velocity of various waves; 1; 2; 3 are 

velocities of the longitudinal displacement (LD) wave, coupled 
transverse displacement (CD-I) wave and tansverse rotational (CD-II) 
wave respectivily and  
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4 Boundary conditions 
 

Appropriates conditions at surface x3=0 are   

(i)  t33 =   S1u3;   

(ii)  t31 =   S2u1;   

(iii)  m32 =   S3  2   
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where the values of di are coupling constants. B0i are the amplitude of incident 

coupled transverse displacement (CD-I) and transverse ratational wave (CD-II) 
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and A0 is the amplitude of the incident L-D wave (Longitudinal Displacement wave). Bi are 
the amplitude of the re ected coupled waves i.e transverse rotational and transverse 

displacement wave and A1 is the amplitude of the re ected L-D wave (Longitudinal 
Displacement wave). Using Snell’s Law de ned as follows 
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Taking the phase for the re ected waves, one can write the equations (16)-(17) 
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and cj, is knowns as attenuation in a depth and equals to (2 0)=! i.e.wavelength of 
incident wave 

 
Making use of the equation (7) in the conditions given by (10)-(12) and with the use 

of equations given by (13)-(15), a homogenous system equations is obtained as 
follows  

X 
aijZj = Yj; (i; j = 1; 2; 3); 
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5 Conclusion 
 

In this investigation amplitude ratios are calculated numerically for non-free sur-face in 

homogenous isotropic micropolar elastic medium. The amplitude ratios are calculated 

for incident LD-Wave and Coupled waves, namely coupled transverse rotational wave 

and transverse displacement wave. The results of the problem can be useful to 

researcher working in the eld of seismology. 
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